

2022/10/06 プレ卒研説明会

円偏光散乱を用いたがん評価技術

Cancer Evaluation technique using of circularly polarized light scattering

理学部 物理学科 生物物理学講座(固体物理学講座) 講師 西沢 望

北里大学理学部生物物理学講座 Laboratory of Biophysics, School of Science, Kitasato University

自己紹介

西沢 望(にしざわ のぞみ)

北里大学 理学部 物理学科 生物物理学講座 講師

- 経歴: 1996年 東京都立町田高校卒業
- **專門:** 2003年 東京理科大学理学部応用物理学科卒業

スピントロニクス (半導体物理、磁性体物理) 結晶成長 博士号(工学)取得

2008年~ 独立行政法人物質·材料研究機構ポスドク研究員 (超伝導物理) 微細加工技術

2010年~ 国立大学法人 東京工業大学 研究員

2008年 筑波大学大学院数理物質科学研究科修了

スピンフォトニクス 光デバイス(LED,Laser)光学測定

2018年~ 国立大学法人 東京工業大学 助教

生体光学 偏光光学、光散乱

2022年~ 学校法人 北里大学理学部 講師(現職)

研究紹介 偏光散乱を用いた生体評価技術 これからの研究 プレ卒の内容 レポート課題

偏光とは何か

This wave is polarized in y-direction

This wave **is polarized** in a direction at an angle of 60° with x-axis

直線偏光と円偏光

直線偏光(linearly polarized light: LPL)

- Optical Coherence Tomography (OCT): 光干涉断層法
- Laser Speckle Imaging (LSI): レーザースペックル像
- Photo-Acoustic Tomography (PAT): 光音響断層法
- Near-Infrared Spectroscopy (NIRS) : 近赤外分光法

A. J. Deegan, *et al.*, Phys. Med. & Bio. 64
07TR01 (2019).
C. Lee *et al.*, "Multifunctional Photoacoustic Tomography" Springer (2017).

生体観察技術と偏光

- 光の特性を用いた生体観察
- 振幅(強度)
- 波長(周波数)
- **偏光**(位相)
 - → 直線偏光
 - → 円偏光

散乱光の偏光状態(偏光の崩れ具合)

- →散乱体の大きさ、密度、分布
- →生体組織の構造、近接組織の 差異の情報
- →腫瘍の検出や前がん病変の 検出に有効

W. S. Bickel et al., PNAS 73, 486 (1976)

ラインスキャン

11/21

シミュレーション

60

90

Monte Carlo simulations of CPL scattering

応用上の課題と円偏光発光ダイオード

Substrate

Spin-LEDにより円偏光の生体観察応用に活路

0

1.30

1.35

1.40

Photon energy (eV)

RT

1.50

1.45

円偏光発光ダイオードとの融合

新しい生体内がん診断技術、生体観察技術の開発 Development of Novel in vivo cancer diagnosis technique

(Un-staining, non-invasive, and in-situ observation)

Theoretical study (1)円偏光散乱の理解

シミュレーションを用いて 様々な病変に対する偏光散乱 現象を検証する。

Experimental study (2)円偏光散乱実験

生体模型や生体組織に対して実験的に腫瘍検出を実証する

Device development (3)がん検出デバイスの開発

円偏光発光素子の開発とともに それらを組み合わせたデバイス のデザインを行う

これからの研究

これからの研究

これからの研究

Experimental study (2) 円偏光散乱実験 生体模型を作製してそれに対して フォトリソグラフィ 実験的に実証する。 模型は東工大(すずかけ台キャンパス) のマイクロプロセス室にて作製 生体組織に対して 実験的に腫瘍検出を実証する。 田中真二教授、島田周博士 <u> 口丸高弘博士</u> (東京医科歯科大学) (自治医科大学)

これからの研究

目標

In viv

これからの研究ターゲット

プレ卒の内容

偏光の基本

1. 数学的手法による偏光の作り方、測り方

2. レーザー実験の安全講習

 3. <u>実験的手法</u>による 偏光の作り方、測り方

4. (余裕があったら)
 偏光を用いた量子実験
 (量子消しゴム実験)
 の光学系セットアップ、測定

20/21

field Guide to

Polarization

レポート課題

【レポート】名前、学籍番号を書いた上、(直筆で)

- 自己紹介
- 今日の話を聞いて興味を持った内容
- (やってみたいと思ったTopicがあったら) 自分が得意なことを交えてアピール
 [提出] メールもしくは直接提出(S-305)

【見学と面談】 1回目は見学実際に実験室などを見学 2回目に面談(この時可能ならば上記レポートを持参)

【研究内容、本日の発表資料など】 HPなど参照のこと (https://nozomi-nishizawa.com/)